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ABSTRACT

The future of mobile computing involves autonomous drones, robots
and vehicles. To accurately sense their surroundings in a variety of
scenarios, these mobile computers require a robust environmental
mapping system. One attractive approach is to reuse millimeter-
wave communication hardware in these devices, e.g. 60GHz net-
working chipset, and capture signals reflected by the target surface.
The devices can also move while collecting reflection signals, cre-
ating a large synthetic aperture radar (SAR) for high-precision RF
imaging. Our experimental measurements, however, show that this
approach provides poor precision in practice, as imaging results are
highly sensitive to device positioning errors that translate into phase
errors. We address this challenge by proposing a new 60GHz imag-
ing algorithm, RSS Series Analysis, which images an object using
only RSS measurements recorded along the device’s trajectory. In
addition to object location, our algorithm can discover a rich set
of object surface properties at high precision, including object sur-
face orientation, curvature, boundaries, and surface material. We
tested our system on a variety of common household objects (be-
tween 5cm–30cm in width). Results show that it achieves high
accuracy (cm level) in a variety of dimensions, and is highly robust
against noises in device position and trajectory tracking. We be-
lieve that this is the first practical mobile imaging system (re)using
60GHz networking devices, and provides a basic primitive towards
the construction of detailed environmental mapping systems.

Categories and Subject Descriptors

C.2.2 [Computer Systems Organization]: Computer-Communications
Networks
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1. INTRODUCTION
Mobile computing is evolving. For decades, mobile computing

centered around the user and her movements, whether it was on
foot, or on vehicles such as buses or cars. However, the next gener-
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ation of mobile computing and its challenges will likely be defined
in the context of a variety of autonomous mobile agents, includ-
ing drones, self-driving cars, or semi-autonomous robots. Today,
autonomous drones are scanning large crop fields and farm live-
stock, unmanned helicopters are delivering supplies to soldiers in
the field, while water-proof drones patrol the underground sewer
system in Barcelona [3]. In the near future, flying drones will de-
liver our mail, packages and groceries, self-driving cars will drop
us off at work, and first responder robots will be first on scene to
rescue victims of disasters [31].

A key challenge for the widespread deployment of these au-
tonomous devices is the environmental sensing system, e.g. a mo-
bile imaging radar system that captures the position, shape and sur-
face material of nearby objects. These systems must provide accu-
rate and robust information about the device’s surrounding at night
or in dark areas (e.g. tunnels), while moving at moderate speeds.
Highly accurate results are critical, and errors can produce dire
consequences. For example, Google’s self-driving cars use maps
with inch-level precisions [35], while devices that assist the visu-
ally impaired must have errors smaller than 10cm [9, 22]. Finally,
to be placed on a variety of autonomous devices, the imaging sys-
tem should be compact, lightweight and cost-effective.

None of the existing solutions meet these needs. Traditional vis-
ible light imaging systems (e.g. cameras) perform poorly in dark or
low-light conditions, and lack the precision desired by these appli-
cations. Acoustic solutions have been used successfully for rang-
ing over short distances [39, 49], but are easily disrupted by back-
ground noise and fail over longer distances. Prior works on RF
imaging use WiFi bands to track human motion and activity [7, 8,
15, 12], detect metal objects [12], and map large obstacles [36]. But
they require costly specialized hardware or large antennas unsuit-
able for mobile devices. A recent project reuses WiFi communi-
cation devices with multiple antennas to image objects, but its pre-
cision is fundamentally limited by WiFi’s large wavelength [25].
Finally, while today’s millimeterwave imaging systems can offer
accurate object imaging [6, 10, 34, 42], they all require specialized
hardware, e.g. large lens radars and FMCW circuits, and do not fit
the size or cost constraints of commodity mobile devices.

RF Imaging via 60GHz Networking Radios. One attractive
approach is RF imaging radar that reuses commodity 60GHz net-
working radios to “image” the environment by capturing 60GHz
transmissions reflected by nearby objects. Such a high frequency
RF radar system has several key advantages over alternatives. First,
60GHz links are highly directional, making them relatively im-
mune to interference from environmental factors such as ambient
sound or wireless interference. Second, 60GHz beams exhibit good
reflective properties, and work reliably in a wide range of lighting
conditions in both indoor and outdoor locations. Finally, 60GHz ra-



dios are relatively inexpensive (< $40 [45, 51]), and small enough
to be included in today’s smartphones and tablets.

The real challenge of building accurate mobile RF imaging is
achieving high accuracy within a small device. A simple rule from
imaging radar theory [13], defined by eq.(1), holds for antenna size
(aperture) and the optimal accuracy (radar resolution):

Resolution =
wavelength · distance

aperture
. (1)

For smartphone-sized antennas, even the most high frequency ra-
dios (5-120GHz) can produce resolutions no better than 1 meter,
clearly inadequate!

Our initial work in this space explored the possibility of using
device mobility to emulate a virtual antenna array with large aper-
ture [52]. This design uses the mobile device as a receiver, with
a decoupled transmitter either embedded in the infrastructure or
“deployed” on-demand by the user, (e.g., mounted on a nearby
drone). By taking measurements of the same reflected signal at
multiple locations and applying the Synthetic Array Radar (SAR)

algorithm [14], the system emulates the signals received by differ-
ent elements of a large antenna array. Using 60GHz beams is es-
pecially advantageous here. Since 60GHz has a carrier wavelength
of 5mm (12x shorter than WiFi/cellular), a user using 60GHz links
can obtain fine-grain resolution with just small movements in the
measurement area [52].

Practical Limitations of SAR. The goal of our work is to design,
build, and deploy an accurate mobile imaging system for practical
applications. Through experiments on an experimental testbed, we
quickly identified two fundamental limitations with the SAR ap-
proach to imaging radar in real-world mobile settings. First, SAR
is highly sensitive to receiver trajectory tracking noise. Any devia-
tion from the path produces significant error in the predicted points
on the reflection surface. This impact becomes particularly notable
when the deviation is greater than λ, the RF wavelength. Whether
the receiver is a handheld device, a robot, or a flying drone, its
movement is likely to deviate from the targeted straight line trajec-
tory, and deviations are likely much greater than λ for 60GHz links,
which is 5mm. Second, high resolution imaging via SAR requires
knowledge of the beam’s phase information (φ). But any mm-level
error in the receiver’s position or trajectory introduces large errors
in computing φ, and thus using phase information actually adds
large errors into the SAR imaging result.

Ensuring accurate positioning and movement tracking to the level
of millimeters is difficult using commodity hardware. Thus, accu-
rate mobile 60GHz imaging requires a new imaging approach ro-
bust to device positioning and trajectory errors.

60GHz Imaging via RSS Series Analysis. Our observation is
that the SAR algorithm is sensitive to positioning errors because
each error propagates when computing positions on each object’s
surface. As a more robust alternative, we propose an approach that
identifies the location, overall shape, size and material of the target
object, by comparing the measured distribution of 60GHz received
signal strength (RSS) values against RSS value distributions pre-
dicted from our general surface-reflection model. Since key sur-
face properties (e.g. width and curvature) are strongly correlated
with reflected RSS distributions, we can accurately determine the
overall surface shape of the target object. We call this approach
RSS Series Analysis, or RSA for short. Finally, our work leverages
a unique advantage of 60GHz radios – as the receiver moves and
(re)aligns its beam, it reports the (strongest) receive beam direc-
tion and the corresponding RSS value [2]. Such directional RSS
measurements carry ample information of the reflection surface to
enable high precision imaging.

RSA is robust against small device positioning and tracking er-
rors because unlike SAR, it does not image an object by locating the
individual points on the reflected surface. Instead, RSA focuses on
how the collection of these points creates a distribution of RSS val-
ues at different observation locations. Such a distribution not only
captures the overall shape of the target object, but also tolerates
local deviations and errors in device positioning and tracking. Us-
ing testbed experiments, we find that an RSA-based 60GHz system
can achieve accurate imaging results in the presence of positioning
errors as large as 10cm.

In the remainder of this paper, we present our 60GHz-based mo-
bile imaging system. We describe techniques for automatically
estimating object location, orientation, surface curvature, surface
boundaries, and even the surface material of nearby objects. We
also present a detailed workflow of a practical implementation of
our 60GHz imaging, including techniques for detecting the pres-
ence of objects and planning the receiver movement. Finally, we
use detailed experimental measurements on a local 60GHz wireless
testbed to validate the utility and accuracy of our techniques. Our
testbed results on 12 common household objects (of 5cm-30cm in
width) show that our proposed imaging system can image these ob-
jects at a high precision (e.g. ∼5cm in object location and surface
boundaries) with just small movement (∼1m) by the receiver.

Limitations. Our work provides a first step in the develop-
ment of high precision RF imaging (re)using 60GHz networking
chipsets. Our current design has several limitations; some funda-
mental to the choice of 60GHz radios, while others can potentially
be reduced via a better design.

First, to stay robust against device positioning/tracking errors,
our RSA imaging does not use any phase information from the ra-
dio1. As a result, we are unable to recognize fine-grained details on
an object, e.g. the individual keys on a computer keyboard. Instead
we can identify the overall rectangular shape of the keyboard. Sim-
ilarly we were unable to identify very small objects like keyrings.
Improving imaging precision in the presence of device positioning
errors is an area of open research. Second, the working range of our
imaging system is determined by the underlying 60GHz radios and
the object surface material2. While our solution does not need ac-
tual high speed transmissions, accurate RSS measurements require
signals to be sufficiently stable. Using an off-the-shelf, low-cost
mobile 60GHz chipset (from Wilocity), we found that the imag-
ing range3 is at least 10m for metal objects, and 5m for cardboard
boxes (like those found in Amazon packaging). Finally, because
60GHz signals cannot penetrate walls or most objects, our imaging
system works when both transmitter and receiver have line-of-sight
to the target object. Thus to perform effective imaging, especially
in 3D, mobile devices must have a way to intelligently navigate
across complex spaces. This is another active research problem.

2. MOBILE 60GHZ RADAR
In this section, we set the context for mobile imaging using 60GHz

transmissions. First, we begin by identifying key challenges facing
mobile imaging systems, and explain why 60GHz radios provide
an attractive solution. We then describe initial designs on 60GHz

1In some cases, not requiring phase can be an advantage of our
system, since most COTS radios do not report phase but only RSS.
2Objects of different materials introduce different degree of signal
loss. Metal objects in general introduce no loss while wood objects
introduce 12dB loss in signal strength.
3Here the imaging range defines the distance between the object
and the receiver, assuming the transmitter and receiver are of equal
distance to the object.



imaging radar using synthetic array radar (SAR) algorithms, and
the limitations they face in real deployment settings.

2.1 Mobile Imaging Radar and 60GHz
Mobile imaging radar systems face additional technical chal-

lenges compared to their traditional counterparts. Traditional imag-
ing radars detect the position and shape of an object by emitting RF
signals and analyzing the reflected signal [7, 8, 15, 12, 36, 6, 10, 34,
42]. They typically make use of specialized hardware such as FM
circuits and highly directional, large dish antennas, and thus are not
suitable for mobile devices. Instead, to be placed on a variety of au-
tonomous devices from smartphones to drones, the imaging system
should be severely constrained in size in both the processing hard-
ware and the antenna, which severely limits the maximum imaging
resolution (see Eq. 1). For smartphone-sized antennas (2.5cm aper-
ture), maximum imaging resolution for an object of 10m away is
1m using 120GHz transmissions or 24m at 5GHz. Furthermore,
mobile radar systems target commodity devices, which rules out
costly FM pulse circuits. Similarly, cost constraints prevent the use
of fine accuracy positioning devices, or dispersion analysis for ma-
terial detection (specialized transmitters).

Instead, mobile imaging radar can (re)use existing wireless net-
working chipsets on mobile devices, but leverage human or device
mobility to greatly extend antenna aperture. This can provide res-
olution better than the limit defined by Eq. (1). Next, we describe
key components of such a system.

Leveraging 60GHz Radios. Today’s mobile devices are equipped
with multiple wireless interfaces, e.g. cellular, WiFi, Bluetooth,
and 60GHz radio4. Among them, 60GHz is ideal for mobile imag-
ing for three reasons.

• Carrier wavelength of 60GHz is 5mm, over 12x shorter than
WiFi/cellular. This translates into 12x smaller required antenna
aperture than WiFi/cellular under the same imaging resolution.

• 60GHz’s short wavelength leads to more predictable propaga-
tion, i.e. minimal multi-path effects and signal strength is strongly
correlated to propagation distance. The system can easily detect
the presence of objects by distinguishing between line-of-sight
(LoS) and reflected signals.

• The object reflection profile is more stable at 60GHz. Since re-
flection loss is strongly correlated to object material [30], the
radar system can determine the material type of the reflection
surface using signal strength measurements.

Emulating virtual antenna arrays with mobility. A mobile
device can emulate a large aperture virtual antenna array by mov-
ing and taking signal measurements at different positions along its
trajectory5. This allows a small mobile device to produce high-
resolution imaging results despite its small aperture antenna. For
example, a device can take signal measurements along a 1 meter
trajectory and achieve an (optimal) resolution at 60GHz of 15mm,
from a distance of 3 meters away. Finally, user mobility also in-
creases the system’s ability to detect surface curvature of objects,
as reflected signals at different locations help capture the curvature
of each of the object’s multiple faces.

Decoupling transmitter and receiver. Given the small size
of mobile devices, the power of a radar system is limited. Under
the limited power, decoupling the transmitter and receiver, a.k.a

4Qualcomm is producing low-cost 60GHz chipsets at or below pre-
vious prices of $37.5, with a range of 23m or more [45, 51]. HP re-
cently released a laptop equipped with the Intel 60GHz chipset [1].
5Aperture of a virtual antenna array is equal to the distance traveled
by the device.
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Figure 1: Experimental results demonstrate the limitations of SAR.

bistatic radar system, can significantly improve radar range over
a single transceiver (monostatic) [40]. We consider a mobile radar
system including the primary mobile device acting as a receiver and
a decoupled transmitter. For example, a system to assist the visually
impaired may include an app on the user’s smartphone, and trans-
mitters embedded in the walls or ceiling. The transmitter/receivers
duties can also be split across multiple mobile devices, e.g. multiple
drones scanning underground tunnels.

The transmitter (TX) sends 60GHz beacons that reflect off of
nearby objects. Each beacon includes the angle of transmission,
and if possible the transmitter’s relative location to the receiver.
Each RX moves and periodically scans and records signal strengths
for beacons, and processes these data on the fly to identify, locate
and image nearby objects.

2.2 A Synthetic Array Radar (SAR) System
Our earlier work proposed a 60GHz imaging system [52], where

the receiver estimates object location and surface boundary using
the Synthetic Array Radar (SAR) algorithm [14]. Applying SAR
on measurements along a trajectory emulates the process where a
large array focuses its narrow beam on different points of the object
surface. Controlled testbed measurements achieve centimeter level
accuracy in detecting object location and surface boundaries.

The SAR Algorithm. The imaging process is driven by the
traditional SAR algorithm for bistatic radar [41]. TX transmits
a simple sine wave, which is reflected by the object towards RX.
RX measures the reflected signal at different locations as it moves.
To understand SAR, consider a simple case where the object is a
point. Let N represent the number of signal measurements taken
by RX. The complex signal ri(t) measured at RX location i is
ri = Aie

−jφi where Ai is the product of the transmit and receive
antenna field radiation pattern and total propagation/reflection loss
at i, and φi is the change in phase. Assuming signal reflection does
not introduce any phase change, φi = 2π

λ
di where di is the total

propagation distance. SAR computes the relative power P(p) at
any point p in space using the RSS |ri| and phase shift φi at dif-

ferent locations: P(p) =
∣
∣
∣
∑

i
rie

j 2π
λ

d̂i

∣
∣
∣, where d̂i is the distance

from TX to each RX location i through the point p. If this point
is a point on the object surface, i.e. d̂i = di, then the summation
is constructive and P(p) is large. Otherwise because of destructive
interference, the relative power becomes small. Thus SAR deter-
mines the object location and shape by searching for the strongest
P(p) values across space.

2.3 Limitations of SAR
Existing design [52] makes two “idealistic” assumptions on de-

vice positioning: (1) TX and RX have perfect knowledge of their
relative position; (2) RX moves in a perfect trajectory e.g. a straight
line. However, in practice these two assumptions do not hold, and
the imaging performance degrades significantly.
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Figure 2: An abstract view of the 60GHz signal reflection and RX’s signal measurements as it moves.

Limitation 1: Sensitivity to trajectory noise. It is well-known
that SAR is highly sensitive to trajectory noise – when moving,
RX often deviates from the targeted path, and its trajectory cannot
be tracked accurately. Such noise translates into errors in comput-
ing d̂i and thus affects P(p). The impact becomes highly visible
when the error is comparable to or larger than RF wavelength λ.
For 60GHz, λ = 5mm. Thus even a few millimeter deviation in
trajectory can largely affect the imaging result.

We perform experiments to examine this artifact. Figure 1 plots
the imaging performance in terms of the error in derived surface
boundary, for different object-to-RX distances. We compare two
systems: “noise-free SAR” where the RX moves in a straight line
and “noisy SAR” where we introduce random deviations (up to
5mm) to the actual RX trajectory. We see that in the presence of
noise, the imaging error magnifies by at least 4 folds to 40cm! We
also observe that errors in TX-RX positioning have similar effect
(results omitted due to space limits). SAR cannot tolerate such
small errors, let alone the 10cm error typically seen from the tra-
jectory of mobile devices like drones.

To address this problem, one may consider using motion sensors
to record the trajectory precisely. But commercial sensors cannot
achieve millimeter-level accuracy. For example, accelerometer re-
ports only the acceleration of device, and the translation informa-
tion can only be obtained by integrating the result twice, resulting
in poor performance [38]. GPS is known to have meter-level errors.
Another approach by traditional SAR is to estimate the movement
noise [27]. This can be effective for aircraft radars because the
movement noise comes from air turbulence and can be approxi-
mated to the level of their operating wavelength (more than 10m).
But for our targeted 60GHz mobile scenarios, the movement noise
is much more random and harder to predict at the millimeter level.

Limitation 2: Dependency on phase information. To achieve
high resolution, SAR requires the knowledge of the phase informa-
tion φi. However, since the positioning/trajectory errors will cor-
rupt the phase transition process, using the phase information actu-
ally introduces large errors in imaging. An alternative solution is to
use “unfocused” SAR which assumes {φi}Ni=1 are all identical, i.e.

φi = 0, and only uses RSS to compute P(p) [52]. This reduces the
impact of trajectory errors, but sacrifices imaging resolution: the
longer the receiver trajectory, the more the “uniform phase approx-
imation” error amplifies and degrades imaging accuracy. Figure 1
shows that unfocused SAR performs slightly better than noisy SAR
but far worse than noise-free SAR. Note that while (noise-free)
SAR always benefits from longer moving distance (larger antenna
aperture), unfocused SAR is highly sensitive to this parameter. Af-
ter the trajectory distance exceeds some threshold, compounded er-
ror from the “uniform phase approximation” overcomes the gain
of larger apertures, and imaging performance deteriorates quickly.
This threshold is object dependent and hard to identify a priori6,

6Our measurements show that the threshold scales linearly with the
object width and RX-object distance, thus hard to identify a priori.

making the performance of unfocused SAR unpredictable. Simi-
larly, existing work reported that unfocused SAR can be 10 times
worse than SAR [28].

Summary. These results highlight the fact that SAR-based sys-
tems are highly sensitive to device positioning errors. Because of
60GHz’s small wavelength (5mm), even small deviations in posi-
tion translate into large distortions in phase transition results, and
significant errors in imaging quality. Given these fundamental lim-
itations, we must explore SAR alternatives to achieve the high ac-
curacy demanded by next generation autonomous devices.

3. RSS SERIES ANALYSIS (RSA)
Our proposal to address these limitations is RSS Series Analysis

(RSA), a new 60GHz imaging algorithm. Unlike SAR, RSA im-
ages an object using only RSS measurements recorded along the
receiver’s trajectory. We summarize RSA here and present the de-
tailed algorithm in §4. RSA offers two advantages over prior work
on RF imaging [25, 29, 52]:
• RSA can discover a rich set of object surface properties at high

resolution (cm level). These include object surface location, ori-
entation, curvature, boundary and material.

• RSA is highly robust against device positioning and trajectory
tracking noise. Testbed results show that it can tolerate devia-
tions as large as 10cm without degrading imaging quality.

3.1 Core Concept
RSA achieves high-precision imaging by combining receiver mo-

bility with the high directionality of 60GHz beamforming. Specif-
ically, RSA treats each object surface as a continuous medium that
reflects a directional 60GHz signal towards the directional receiver
RX. As RX moves and continually (re)aligns its beam to maximize
received signal strength, the measured RSS value and its receive
beam direction (angle of arrival (AoA)) carry information of the
object surface. By analyzing these directional RSS measurements
across multiple RX locations, RSA recovers important properties
of the object surface, including position, curvature, boundary and
material. At a high level, RSA works in 3 sequential steps.

1. Surface curvature & center position. Consider a scenario
in Figure 2(a) where TX points towards and reflects its beam off a
flat object surface. As it moves, the directional receiver RX max-
imizes RSS by pointing the receive beam towards the mirror point
of TX respect to the object surface, i.e., TXmirror. This is a hy-
pothetical point that would have originated the signals if there was
no reflection, which can be computed as the intersection of AoAs,
i.e., the strongest RSS direction, for different points on the RX tra-
jectory. While in practice the AoA reported by RX might deviate
slightly due to non-ideal antenna patterns, imperfect reflection and
measurement artifacts, one can still locate TXmirror by intersect-
ing the series of (noisy) AoAs collected as RX moves.

Now consider the scenario where the object surface is curved,
either convex (Figure 2(b)) or concave (Figure 2(c)). We can still
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Figure 3: Objects used in our experiments. The number on top of each object is the width of the object. The left five objects (a)-(e)

have curved surfaces and the right seven objects (f)-(l) have flat surfaces.

locate TXmirror by intersecting the reported AoAs. Following the
mirror and lens equation [24], a surface’s curvature type is deter-
mined by its focal length f :

1

f
=

1

dTX

+
1

dTXmirror

(2)

where dTX and dTXmirror
are defined in Figure 2. Both values

are under sign convention, i.e., positive if behind the object, and
negative when in front of the object. The surface is convex if f > 0,
concave if f < 0, plane if f → ∞, and |f | is half of the curvature
radius. Therefore, we can identify surface curvature by computing
dTX and dTXmirror

. This requires information of the position and
surface orientation of the object center, which can be estimated by
intersecting the TX center beam direction with the reported AoAs.

2. Surface boundary. Once curvature is determined, RSA de-
tects surface boundary by exploiting the unique effect of 60GHz
directionality on signal reflection. When RX is within the area
of “object coverage area” (Figure 2(a)), the corresponding RSS is
strong because RX can align its beam to capture the (strong) re-
flected signals. But when RX moves outside of this area, the qual-
ity of its beam alignment (and RSS) degrades quickly. Thus shape
of observed RSS values across different RX locations is strongly
correlated to the object surface boundary. Using the estimated sur-
face curvature, center location and orientation, we can model this
correlation to enable reliable detection of surface boundary.

3. Material. When a signal hits a surface, parts of it may be “ab-
sorbed,” leading to a reflection loss. At 60GHz, this reflection loss
has a strong correlation of the surface material and the incident an-
gle [30]. In particular, the RSS of a reflected signal is the RSS of a
LoS signal (of the same propagation distance) minus the reflection
loss (all in dB). Once we know surface location and curvature, we
can derive the reflection loss and incident angle, and thus identify
the likely surface material(s).

3.2 Quantifying Correlation via Measurements
Our intuition is that RSS measurements along a trajectory are

highly correlated to a number of properties of a reflection surface.
We use a commodity 60GHz radio testbed (details in §6) to better
understand these correlations. We experimented with twelve ob-
jects (listed in Figure 3) of different width (5cm–30cm), curvature,
material (wood, metal, plastic) and surface roughness (smooth vs.
rough)7 . We varied the TX and RX locations to examine the impact
of object placement.

7A surface is considered smooth if h < λ
8cosθ

and rough if

h > λ
8cosθ

[48]. Here h is the min to max surface protuberance,
λ = 5mm and θ is the incident angle. For our objects, the plastic
keyboard is “rough” and a monitor surface is “smooth.”

We experimented with four movement patterns involving a 1-
meter straight line trajectory in space: a drone flying8, a user mov-
ing a mobile phone over a line, an arc, and a perfect straight line.
All four trajectories use the same start and end positions, and take
the same amount of time to finish. RSS measurements are taken
every 1cm, leading to a total of N = 100 measurements per trajec-
tory. Each experiment collects {RSSi, AoAi}Ni=1, where RSSi is
the strongest RSS value as RX rotates its beam at location i and
AoAi is the corresponding receive beam direction.

Our experiments led to two key observations.

1. Strong correlation with object surface properties. Our
experiments confirm a strong correlation between RSS measure-
ments and object surface properties. We show in Figure 4 that the
RSS patterns, either as RSS values or AoAs, can be used to distin-
guish objects of different surface curvature, surface boundary (i.e.

width), and material. The groundtruth of focal length in Figure 4(a)
is 0.6m, 0.6m, and infinity, respectively.

2. Robustness against trajectory noise. The RSS series (both
RSS and AoA) are highly robust against trajectory noise. Figure 5
illustrates different views of the four trajectories, and the RSS val-
ues along the trajectories when imaging an object of 6.7cm wide.
While the trajectories deviate from each other by as far as 10cm,
their spatial RSS patterns align well. We experimented with other
movement patterns and objects, and arrived at similar conclusions.
A closer look shows that RSS values correlate most strongly with
propagation distance d. But in practice, d is at least multiple me-
ters, and trajectory errors are in centimeters. Thus trajectory errors
have little impact on RSS.

While these results may not be representative, they validate our
intuition that much about properties of the reflection surface can be
found in RSS measurements along the movement trajectory. Next
we present techniques to extract these properties from RSS data.

4. RSA IMAGING ALGORITHM
Our RSA algorithm provides highly accurate imaging results on

distance, curvature, boundary, and material detection, all while tol-
erating positioning and trajectory errors. It takes three inputs: a
sequence of RSS measurements in RSS and Angle of Arrival tu-
ples {RSSi, AoAi}Ni=1, RX’s trajectory (i.e. RX location i) and
its relative position to TX, and TX’s transmit beam direction and
pattern. We will discuss in §5 the procedure to obtain these inputs
and the sensing process for TX to focus its beam on the object.

Imaging an object takes four processing steps on the RSS data.
We estimate location and orientation of the object center, then com-
pute surface curvature, and boundaries, and finally identify a set of
potential surface materials. We first describe these key components

8Using a high-end IRIS+ drone by 3D Robotics Inc., we captured
its movement trajectory when configured to fly straight.



-1

 0

 1

Concave Convex Plane

F
o
c
a
l 
L
e
n
g
th

 (
m

)

Derived From Strongest Signal Angles

(a) Plane vs Convex

-80

-76

-72

-68

 0  20  40  60  80  100

R
S

S
I 
(d

B
m

)

Measurement Index

Wide Narrow

(b) Narrow vs Wide

-80

-76

-72

-68

-64

-60

 0  20  40  60  80  100

R
S

S
I 
(d

B
m

)

Measurement Index

~12dB

Metal Wood

(c) Metal vs Wood

Figure 4: The observed RSS seires are strongly correlated with the object surface properties.
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-80

-78

-76

-74

-72

-70

-68

 0  20  40  60  80  100

R
S

S
I 
(d

B
m

)

Measurement Index

Arc
Hand

Drone
Straight

(c) Stable RSS pattern for 6.7cm wide object

Figure 5: The measured RSS series remains stable across all four (noisy) 3D trajectories.

to image a single surface, and then the process to image multiple
surfaces/objects. Finally, we describe how RSA mitigates noise
from device localization, interference and RSS measurements.

4.1 Estimating Object Center & Orientation
RSA starts by computing an initial estimate of the location and

surface orientation of the object center, since it is input for subse-
quent steps. The intuition is simple: when TX’s beam covers the
object evenly and TX/RX are perfectly aligned, we can locate the
object surface center at the intersection of the TX beam direction
and each AoA. While the TX/RX alignment is imperfect (since
TX fixes its beam), the intersection with each AoAi is still a good
approximation of the reflection surface.

Like [52], RSA estimates the object center by performing a “ma-
jority vote” on the set of intersection points. Given K (K < N ) in-
tersection points, RX identifies a cluster of ⌊K

2
⌋+1 points with the

minimum mean square error (MSE) among themselves. It approxi-
mates the object center as the center of the cluster, i.e. the position
with minimum MSE to all other points in the cluster. To generate
the K intersections, RSA picks a subset of AoAs from {AoAi}Ni
whose RSSi is among the strongest (and above the noise level) and
intersects them with the center direction of TX beam.

Since the incident and reflected angles are equal, we can compute
the (candidate) direction of the object surface’s principal axis with
respect to each of the K AoAs. We derive the object center’s ori-
entation by computing the principal axis using majority vote over
K candidates, then computing its perpendicular direction.

A key difference from [52] is that RSA iterates to improve its es-
timate of object center and orientation, using as input the curvature
and boundary results from later steps. This helps to mitigate the
impact of TX/RX positioning errors and other artifacts (§4.6).

4.2 Characterizing Surface Curvature
After object position comes surface curvature. We characterize

an object’s surface curvature based on the mirror and lens equation
defined by eq. (2). We first compute the “TX mirror point” and then
compute the focal length f from dTX and dTXmirror

. We compute
it as the intersection of angle of arrivals for different points on the
RX trajectory (Figure 2). To mitigate noise/artifacts in AoA mea-
surements, RSA first smoothens the AoAs using a moving window,

e.g., of size 3 in our current design, then performs a majority vote
on pair-wise AoA intersections to derive the mirror point.

Given the estimate of object center point and orientation, we cal-
culate dTX and dTXmirror

by projecting the TX and the TX mirror
point to the principal axis (see Figure 2). If we set the object cen-
ter as position 0, dTX is negative and dTXmirror

is positive. RX
then computes f based on eq. (2). The surface is convex if f > 0,
and concave if f < 0, and 2f is the curvature radius. In theory, a
flat/planar surface should have f = ∞. Yet in practical scenarios,
f >1 meter is sufficient to identify most objects with a flat surface.

4.3 Computing Surface Boundary
The next step is to compute the surface boundary, i.e., the width

of the surface if the object was projected to the plane of RX’s move-
ment trajectory. We exploit the strong correlation between the RSS
sequence {RSSi}Ni=1 and the object surface, and propose a simple
RSS model for surface reflection. After adding surface curvature
and center location as parameters, this model generates a direct
one-to-one mapping between a specific surface boundary and the
sequence of RSS values captured by RX. Thus we can estimate the
surface boundary by searching for a surface profile whose model-
predicted RSS sequence matches those observed by RX.

A RSS model for surface reflection. We develop a new surface
reflection model, which takes into account the reflection property of
a “fixed-size” reflection surface. Consider the TX transmission to-
wards the object as a collection of sharp rays, each reaching a point
p on the object is reflected towards RX. Here we consider a general
scattering reflection scenario where the point p uniformly scatters
signals in space according to the Lambertian reflection model [26,
53]. We also consider a far-field scenario where the propagation
distance is much larger than wavelength (i.e., > 100 times larger).
In our case, the wavelength of 60GHz is 5mm, and the overall
propagation distance in our system should be at least 0.5m. Us-
ing the complex baseband representation under far-field approxi-
mation, the 60GHz received signal at RX location i is

ri(t) =

∫

P

λ
√

Gp(i)e
−j 2π

λ
dp(i)

4πdp(i)
︸ ︷︷ ︸

overall propagation

Γp(i)e
−jφp(i)

︸ ︷︷ ︸

reflection

u(t)dp (3)
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Figure 6: Comparing measured and predicted RSS patterns.

where for the pth reflected path arriving at location i, Gp(i) is the
product of the corresponding transmit and receive antenna field ra-
diation pattern, dp(i) is the total propagation length, Γp(i) is the
amplitude reflection coefficient, φp(i) is the corresponding change
in phase, u(t) is the complex baseband transmitted signal, and P

represents the object surface in 3D space. The key to this model is
the constraint of the fixed size reflection surface, captured by the
integral over P.

Because our design targets the overall shape of the object, we
simplify Eq.(3) by assuming the surface is relatively smooth, i.e.

ignoring the fine-grained details. Therefore we consider a uniform
reflection pattern: i.e., Γp(i) = Γ, φp(i) = φ,∀p ∈ P, i = 1..N .
Then we can pull out the Γp(i) term, and derive RSS as:

RSSi = Pt · Γ2

∣
∣
∣
∣

∫

P

Rp(i)dp

∣
∣
∣
∣

2

(4)

where Rp(i) =
λ
√

Gp(i)e
−j 2π

λ
dp(i)

4πdp(i)
. Given the object curvature

and center location, and locations of TX and RX(i), we can cal-
culate Rp(i). Given the object surface boundary or width, we can
construct P and then derive RSSi

9. To remove the contribution of
Γ which is unknown, we can normalize RSSi across i.

We verified this model using testbed experiments on objects in
Figure 3. Example results in Figure 6 show that normalization ef-
fectively separates the contribution of materials from that of the
surface boundary, i.e. two objects of the same width but different
materials have the same normalized RSS series. The measured RSS
series closely matches the series predicted by our model.

Fitting Measurements to Model. We determine the surface
boundary by matching the observed RSS values to a range of RSS
series produced by the model. In this process, we consider a range
of possible surface width values. For each candidate width w, we
construct the physical surface P, use the model to predict the (nor-
malized) RSS series, and compare it with our (normalized) mea-
sured RSS series. To compute “similarity” between two series (or
curves), we experimented with multiple metrics, including MSE,
MSE of the derivatives, and MSE of the dynamic time warping al-
gorithm [37]. Among these, MSE of the derivatives is the best:

η = 1/
N∑

i=1

(

∆model
i −∆real

i

)2

(5)

where ∆real
i and ∆model

i are the derivatives of the normalized RSS
at i using the measured values and the modeled values, respectively.
This metric works well because computing surface width means
detecting the two edges, which lead to fast RSS degradation at the
corresponding RX locations. The RSS derivatives effectively cap-
ture such RSS variation. We leave the task of finding the optimal
metric to future work.

9For efficiency, we approximate P as a collection of points whose
interspacing ≤ 5mm.

Minimizing Search Space. We can significantly reduce the
search space for the surface boundary size, by looking at only widths
that can exist within the triangle formed by the start and end points
of the RX trajectory, and the TX mirror point (see Figure 2(a)). RX
can detect if the width w is large enough for the triangle to bound
the reflection surface (steep dropoff in RSS before and after the sur-
face boundaries). For very large surfaces, RX might need to extend
its trajectory to detect the surface boundary. Assuming the surface
is bounded by the triangle, we can estimate the maximum value of
w using geometry. We then search for the true value of w starting
from the max down to 1cm in the unit of 0.1cm. These settings
are sufficient for the target imaging precision. Going for a higher
granularity adds extra computation complexity but little improve-
ment of imaging quality. Currently our search takes less than 3s
for all our twelve test objects using a matlab implementation on a
standard MacbookPro. As future work, we can further prune the
search space using sophisticated methods such as cutting planes.

Measuring Curved Surfaces. For curved surfaces, the reflected
RSS series display a different pattern: a convex surface will scatter

signals to a wider area while a concave will gather signals towards
a smaller area (Figure 2). Thus using the above method, we will
likely image a narrow, convex object as a wide object.

To address this, we apply a slightly different algorithm. Upon
determining that the object surface is non flat, RSA computes the

surface boundary using { ˆRSS(θ)i}Ni=1, i.e. the RSS measured at a
fixed receive beam direction θ across all positions along the RX tra-
jectory. Here θ = AoAj, j = argmaxi=1..N RSSi, i.e. the AoA
of the strongest RSS across all the RX locations. Intuitively, this

direction θ is parallel to the surface’s principal axis, thus ˆRSS(θ)i
includes less contribution of surface scattering (or gathering) but
more impact of surface boundary. This way, we can apply the same
surface reflection model by using the curvature detection result to
construct P. In §6, we show that this method is accurate and also
robust against errors in the estimated curvature radius.

4.4 Identifying Potential Surface Materials
Finally, we seek to estimate the surface material based on the re-

flection loss Γ2. Existing measurement studies on 60GHz propaga-
tion and reflection have built a table of Γ2 values as a function of the
surface material and the angle of incident [30]. We can estimate the
angle of incidence given the estimated surface orientation and cur-

vature. From Eq. (4), Γ2 = RSSreal
i /

(

Pt

(
λ
4π

)2 ∣
∣
∫

P
Rp(i)dp

∣
∣2
)

.

With Γ2 and the angle of incidence, we can narrow down the mate-
rial type using the reflection loss table. For example, we can distin-
guish metal objects (0.3dB loss) from wood (12dB loss) or plastic
objects (8dB loss).

To obtain a reliable estimate of Γ2 for flat surfaces, we select a
group of the strongest RSS measurement locations, and calculate
the Γ2 as above for each location. We then compute Γ2 as their
average. This helps to mitigate noise contributed by reflection arti-
facts near object boundaries.

Estimating Γ2 for curved surfaces is more challenging because
as signals scatter or gather, the above calculation becomes less reli-
able. Our current solution is to introduce a compensation factor that
approximates the impact of signal scattering or gathering. Specifi-
cally, we input the already derived object curvature and width into
the RSS model, use it to generate the RSS series (ignoring Γ2), and
record the maximum RSS value, γcurve. We then input the width
into the RSS model but treat the surface as flat, generate the RSS
series and record the max, γflat. The final reflection loss estimate
is Γ2 · γflat/γcurve where γflat/γcurve reflects the impact of sig-
nal scattering/gathering.
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Figure 7: Detecting and imaging multiple objects. (a) The three scenarios considered: two surfaces separated by a gap, a single

continuous surface, and one small surface in front of a big one. (b) The AoA pattern changes abruptly when two surfaces are

separated. (c) The AoA pattern displays three segments when a small surface is in front of a big one.

4.5 Imaging Multiple Surfaces/Objects
So far our discussion targets scenarios with a single object sur-

face. We now discuss the feasibility of RSA for detecting and imag-
ing multiple objects/surfaces. We consider two representative sce-
narios: (1) two nearby objects separated by some space; and (2) a
smaller object in front of a larger one (see Figure 7(a)).

Intuitively, a key difference between single and multiple surface
reflection should be the reflection angle, i.e., the AoAs. Using
testbed measurements, we verified that for the above two multi-
surface scenarios the AoA pattern is significantly different from
a single surface of the same width. For example, Figure 7(b) plots
the reported AoAs as a function of the measurement location (1-60)
over a 60cm RX trajectory. For an even surface of 30cm in width,
the AoA pattern grows smoothly as the RX moves. But when this
object is replaced by two 10cm objects separated by 10cm (same
overall width), the AoA pattern changes abruptly (by 3−5◦). Simi-
larly, Figure 7(c) plots the AoA pattern when one 10cm-wide object
is placed in front of a 80cm-wide one. It is segmented into three re-
gions, corresponding to the uncovered portions of the larger object
surface on each side and the small object in the middle.

These significant changes in AoA patterns suggest that multiple
objects can be detected using AoA derivatives along the trajectory.
For all object scenarios we tested10, a threshold of 3◦ can reliably
detect and extract multiple objects. We can then apply the single-
object based RSA to each segment to image individual surfaces of
moderate sizes. The key limitation here is that our imaging system
lacks the precision to image small objects and fine-grained surface
details, e.g. individual keys on a computer keyboard. Instead, it
should detect and image an Amazon package on the floor.

Above results also suggest that RSA can handle interference due
to reflection from other objects. We treat the 80cm-width surface
in scenario C as the background object, where our system can still
identify and image the 10cm-wide object (surface 2) in the middle.

4.6 Handling Noise & Interference
We design RSA to stay robust to three types of noise or errors:

positioning error for locating TX and RX, trajectory noise when
RX’s trajectory deviates from the ideal line, and RSS measurement

noise caused by RF interference or background reflection.

TX/RX positioning errors. Errors in TX/RX positions can
propagate to errors in locating object center point and TX mirror
point. We address this by exploiting the fact that the measured
RSS series is stable and strongly correlated with the object surface.
After one round of imaging, RSA introduces controlled perturba-

10In our scenarios, when two objects are separated, the gap ≥ 10cm.
The ability to detect 10cm gaps between objects is sufficient for
most mobile applications like drones.

tions to explore possible small shifts in center location and surface
boundary values that lead to a better match between the model pre-
dicted RSS profile and measured RSS data. Specifically, it shifts
the TX/RX locations by up to 10cm and repeats the imaging pro-
cess. This iterative search stops when the similarity metric (defined
by eq. (5)) exceeds some threshold, or the boundary results of two
consecutive iterations differ by 1cm or less, e.g. convergence.

RX trajectory errors. The basic imaging algorithm assumes
precise data on RX’s trajectory. In practice, the movement itself is
noisy – a high-end drone configured to fly a straight line can deviate
by 4cm. Motion-tracking (via accelerometers or other sensors) can
easily generate 10cm errors in less than a second [4, 38].

Trajectory errors can translate into errors in locating the object
center and TX mirror point, and errors in RSS model. For the for-
mer, RSA denoises by applying “majority vote” across multiple RX
AoA measurements (§4). For the latter, we found the impact on
imaging quality to be minimal, and both RSS model and measure-
ments are insensitive to trajectory errors < 10cm. In our scenarios,
we configure RX to move in a line and rely on external trajectory
control to keep the trajectory error less than 10cm. In practice, any
errors that do propagate will add to noise in estimates of object cen-
ter and TX mirror point. These will be addressed together with any
resulting noise from TX/RX positioning errors (see above).

Interference. Background reflection from other objects can be
handled via the multi-surface detection and imaging process de-
scribed in §4.5. The bigger challenge comes from possible cor-
ruption of RSS measurement values by RF interference from other
60GHz transmissions, e.g., strong signals from a LoS transmitter to
RX will distort the AoA values.

If angular separation between the interfering signal and reflected
TX signals is sufficiently large, RSA can eliminate interference us-
ing 60GHz directionality. As RX scans across directions, it de-
tects and decodes signals from different sources and only uses those
from TX to construct the RSS series. In rare cases where the signals
are closely aligned, the interference will likely affect data transmis-
sion between TX and RX during imaging, e.g. high RSS but recur-
ring packet errors. When this is detected, TX and RX can switch to
another 60GHz channel or change physical location.

5. IMPLEMENTATION
We now present the detailed workflow of a practical implemen-

tation of RSA imaging. First, TX and RX determine each other’s
position. They scan for any objects, and once found, TX focuses its
beam on the object and computes the RX movement direction and
distance. RX moves, collects RSS measurements and images the
object. The process does not require tight synchronization between
TX and RX, only that TX signals remain consistent during imaging,



e.g., a simple sine wave, so that RSS is stable over time. In partic-
ular, for 802.11ad [2], our sine wave based design can directly use
single carrier (SC) to send consistent 0s or 1s and generate a regular
sine wave, or use one of the OFDM subcarriers for imaging.

TX/RX positioning. To determine each other’s location, TX
and RX can exchange their locations (if known), or apply exist-
ing mobile localization/ranging techniques based on RF or acous-
tic signals [11, 29, 39, 49]. We can also apply 60GHz localization
in addition to improve localization accuracy to centimeter-level (if
TX and RX have line of sight).

60GHz localization leverages the 802.11ad bootstrapping proce-
dure and includes two steps. First, TX (in directional mode) steers
its beam in different directions and embeds its beam direction in the
signal. RX (in omni-directional mode) receives signals over time
and identifies the strongest signal strength r and TX beam direc-
tion α. If a LoS path exists between them, then RX can compute
its distance to TX d from r (using the 60GHz Friis propagation
model [19]). To detect whether LoS exists, TX compares α and r
with those estimated by the external localization technique. If the
discrepancy is large, especially if d is larger, the path is reflected.
Otherwise, LoS exists and TX locates RX via α and d. Next, TX
transmits in α direction. RX enters directional mode and scans for
the strongest signal. RX can locate TX using the strongest receive
direction at RX and d.

Object Sensing & RX Movement Planning. TX and RX use
the above two steps of 60GHz localization to sense nearby objects
and compute the appropriate RX trajectory. There are two modifi-
cations from the sequence above. In step one, instead of reporting
only the strongest RSS, RX reports a list of TX beam directions
where the RSS exceeds the noise level. After pruning the list by
removing the LoS directions, the remaining represent reflected sig-
nals. From these directions, RX identifies a set of TX beam di-
rections {αk}Tk=1 that TX should focus on based on their beam
radiation patterns and steering granularity. If an object is too wide
to be covered by a single TX beam, RSA can image the object by
having TX steering sequentially in multiple segments and stitching
the image results, or by TX modifying its antenna radiation pattern
to form a wider beam (if possible).

In the second step, TX slowly steers its beam in each of these
directions while RX measures AoA for each αk direction. Ideally,
for each αk, RX should move perpendicularly to the corresponding
AoA to detect object width. Furthermore, RSA uses the intersec-
tion of αk and AoA to approximate the object location and thus
the total propagation distance dp. The projected RX movement
distance is then the width of the TX beam pattern at distance dp,
which is sufficient to discover the object surface shape. Together
the recommended path and distance allow RX to create a virtual
antenna array large enough to discover the object’s surface while
minimizing the travel distance.

Object Imaging. TX focuses its transmission on each specific
direction (while embedding the beam direction in its signal). As
RX moves, it collects RSS measurements using the 802.11ad an-

tenna alignment procedure. Collecting the (RSS, AoA) tuple across
multiple directions (§4.3 and §4.6) does not require extra measure-
ments, and is done by modifying 802.11ad to report additional data.
Since for phased array, full-scope beam steering takes less than
1ms11, RX can perform real-time measurements as it moves, even
when TX rotates its beam across multiple directions to image mul-
tiple objects. Finally, RX analyzes the data to image the object(s).

11Phased array beam steering delay is as low as 50ns [47]. Scanning
360◦ in the steps of 1◦ takes 18µs.

Latency. We expect the imaging delay is dominated by those of
RX movement and RSA data analysis. For latter, our current im-
plementation finishes in less than 3s and can easily be further opti-
mized, e.g., using convex optimization during iterative search (§4.6).

6. EVALUATION
We evaluate RSA in practical settings using off-the-shelf 60GHz

radios. We study its utility and imaging quality in the presence
of device localization and trajectory errors and background reflec-
tions. We also examine its error tolerance, and its sensitivity to dif-
ferent system/hardware configurations. Finally, we compare RSA
with SAR and unfocused SAR, and perform a multi-object case
study by emulating drones locating a target object using RSA.

6.1 Testbed and Experimental Setup
We consider two types of 60GHz beamforming radios. The first

uses a pair of Dell D5000 dock (as transmitter) and 6430u lap-
top (as receiver), both equipped with a low-cost Wilocity 60GHz
chipset designed for indoor mobile communications. The chipset
uses a 2×8 rectangular antenna array, and operates under the IEEE
802.11ad standard [2]. Unfortunately, the chipset does not expose
RSS values and the corresponding beam directions. Thus we use
it only for understanding the range of our 60GHz imaging design
when implemented on 802.11ad networking radios (§6.2).

The second and our main imaging testbed uses two HXI Gigalink
6451 60GHz radios, designed for outdoor communications. Since
there are no suitable 60GHz steerable antenna arrays on the mar-
ket, we emulate beam steering by setting a horn antenna (of 10◦

3dB beamwidth) on an electronic controlled mechanical rotator.
The horn antenna’s main lobe pattern closely align with that of a
10×10 array with 1dBi elements and 21dBi gain, and the rotator
physically adjusts the beam direction in units of 0.15◦. The HXI
radios use the On-Off-Keying modulation to generate sine waves in
random on-off periods and reports RSS every 50ms. We note that
under the same environment, the RSS of the HXI link is actually
17dB12 weaker than that of the Wilocity chipset. This is because
our HXI radio transmits at 0dBm and the cable that connects the
horn antenna to the radio introduces 23dB loss (in order to enable
mechanical antenna rotation).

The results of HXI radios with horn antennas should generalize
to phased arrays, because our emulation matches phased arrays in
three key aspects. First, 60GHz signal strength is largely deter-
mined by directionality and signal patterns of the main beam lobe
(the side lobe is 13.26 dB weaker), and our horn antenna’s main
lobe pattern closely aligns with that of a 10x10 array [51]. Sec-

ond, because 60GHz propagation is stable over time (verified by
others [23, 50] and our own measurements), at each location RX
can accurately measure RSS along different directions despite its
slow beam steering speed. Third, the fine granularity of our rotator
allows us to emulate beam steering of phased arrays, e.g. in units
of 1− 3◦ required by the 802.11ad standard [5].

Experiment Setup. Our experiments take place in a classroom
of size 8m×12m with concrete walls. We place an object in the
middle of the room with LoS to both TX and RX. We move both
TX and RX to study imaging range and angle. By default, TX is
2m away from the object and RX is 3.5m away. We tried other dis-
tances with little impact on results as long as the total propagation
path (from TX to object and then to RX) does not exceed the radio
range. By default, the testbed steers beam at a 1◦ granularity.

12The HXI radios have 0dBm transmit power, 25dBi antenna gain
per radio and 23dB cable loss due to the use of rotator. To compare
with, the Wilocity chipset has 10dBm transmit power and 17dBi
antenna gain per radio.



We consider two types of RX movement: human waving smart-
phone and drone flying. The mechanical beamsteering means we
cannot perform imaging in real time. Instead, we record five tra-
jectories per type (by marking on paper) from actual movement of
human users and our Iris drone, and use them to drive RSS mea-
surements on our mechanical beamsteered radio. We align the tra-
jectories so that the start and end points are 1 meter apart. Whether
it’s a user waving the device or a flying drone path, the maximum
trajectory errors against a straight line are roughly 10cm. To follow
a specific moving trajectory, we mark the trajectory on the floor and
pinpoint the receiver to each trajectory point using a plumb-bob.

We implemented the 60GHz localization mechanism (discussed
in §5) for TX and RX. Across multiple scenarios, the measured
TX/RX localization error is consistently between 2 and 6cm. We
broaden our tests by adding random 2-6cm TX/RX position errors
to our data analysis. In total, we have 60 noise instances per ob-
ject/scenario to obtain statistically significant results.

Test Objects. Like existing works on radar imaging [25, 36, 21,
20], we evaluate the utility and accuracy of our proposed design by
imaging real objects of different size, curvature, and material. In
addition to the objects listed in Figure 3 which are of 5cm-30cm in
width, we also test smaller objects including a keyring and a small
wrench (2.5cm in width). From these we seek to identify objects
that our system can accurately image and those that it cannot.

6.2 Imaging Range & Angle
We first use the Wilocity radios to verify the working range of

our 60GHz imaging system when implemented using today’s 802.11ad
mobile devices. For a pair of TX and RX, we block the LoS path
between them, forcing the link to search and use NLoS paths, i.e.

the reflection path. Using objects of different materials as the re-
flector, we measure the maximum propagation path length (TX to
object to RX) such as TX can successfully transmit a 100MB file
to RX. The path length is 20m for strong reflection material like
metal, and 10m for weak reflection material like cardboard boxes
(used for Amazon packaging). Assuming that TX and RX are of
the same distance to the object, the corresponding imaging range
(from object to RX) are 10m and 5m, respectively. We note that
in our measurements the RSS is sufficient to support high speed
communication (385Mbps) at these distances. When it comes to
imaging, the RSS requirement can be much lower as long as the
resulting RSS measurement is accurate. This means that the actual
imaging range can be much longer.

As discussed earlier, due to extra cabling loss, our HXI link is
17dB weaker despite its stronger antenna gain. As a result, the
imaging range is less than half of the Wilocity link, and we have
to move the devices closer than we expect. Again this is due to
artifacts of our testbed configuration.

Impact of Imaging Angle. Like [25], we found that the imaging
quality depends on the imaging angle, defined by the relative loca-
tion of TX to the object and the trajectory of RX. Specifically, to
identify the object, TX’s beam should cover the object and the re-
flected signal should reach RX along its trajectory. Our system ad-
dresses this issue by performing object sensing and RX movement
planning before running actual imaging (as discussed in §5). This
also helps to reduce the amount of movement required to detect the
overall object shape. For example, we have tested our algorithm
by varying the object orientation relative to TX, i.e. the angle of
incident, between 30◦ and 45◦, and found that it always provides
an ideal RX movement trajectory, and the subsequent imaging re-
sults remain consistent across these experiments. We also found
that RX’s actual movement can deviate from the ideal trajectory by
at least 7◦ without noticeable impact on imaging quality.
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Figure 8: Result of imaging a curved surface.

6.3 Imaging Precision

Position/Curvature/Width. Table 1 lists RSA’s overall imaging
results in terms of errors in object center position and orientation,
detected curvature type, shape deviation13, and errors in surface
boundary (width) estimation. We list the median and max val-
ues across all experiments while varying TX/RX position errors
(60 instances) and RX trajectories (10 instances, 5 user-waving, 5
drones). The results for human waving and drone flying are consis-
tent, so we did not isolate them.

We see that in the presence of position/trajectory noises, RSA
achieves centimeter-level accuracy across all the objects, flat or
curved. In terms of center locations, the max error is below 4cm
for metal flat surfaces, and slightly larger (6-9cm) for curved sur-
faces and other materials (due to weaker reflection). Note that the
depth of the object can be calculated based on the estimated object
center position and the location of RX, which we found has a max
error of 6cm. The orientation error is always < 1◦. RSA detects
the curvature type accurately, and characterizes the shape of the
surface within 0.68cm deviation for flat surfaces and < 6cm for
curved surfaces. The maximum error in surface width estimation is
bounded 4.5cm. Figure 8 plots the imaging result of a curved sur-
face which captures the overall curved shape while being a slightly
wider than the actual object.

Material. Using existing measurements on 60GHz reflection [18,
30], we built a reflection database of 39 materials. We added the
profile of cardboxes using our own measurements. Using RSA
estimated reflection loss and incident angle, we identify from the
database the top three material candidates. Table 2 lists the result
for four flat objects of different types (metal, plastic, wood and
cardboard) and two curved objects, where RSA can successfully
narrow down the material type.

Observed Limitations. We also make the following key ob-
servations from our experiments. First, RSA reuses COTS 60GHz
radios to image objects in the presence of device movement and
tracking noises. To be robust to such noises (which existing de-
signs like SAR fail to address), RSA has to sacrifice some degree
of imaging precision without using the phase information14. As a
result, our design seeks to identify the overall shape of an object
surface (location, orientation, surface boundaries, material), rather
than fine-grained details such as individual keys on a computer key-
board. Second, our design is unable to accurately image small ob-
jects. It can detect and locate a wrench handle (of 2.5cm width),
but the detected width varies between 1cm to 5cm. It cannot lo-
cate a keyring because the reflection is too weak to be captured
by our HXI radios. To recognize these small objects, one could

13Shape deviation is defined by the maximum difference between
the actual object surface and the imaged object surface projected
onto the object surface’s principal axis.

14In practice, not requiring phase information can be an advantage,
since most COTS radios do not report phase but only RSS values.



Ground truth Detected Position Detected Shape
Center location error Orientation Detected Shape deviation Width error

Objects in Figure 3 Shape Radius Width Median Max error (Max) curvature Median Max Median Max
(a) Aluminum Jar Convex +10.0 10.00 4.55 8.11 0.29◦ Convex 1.59 2.22 1.00 2.33
(b) Steel cylinder Convex +15.0 15.00 4.43 4.98 0.51◦ Convex 1.46 1.78 1.03 1.88
(c) Curved steel surface Convex +29.0 21.21 7.26 9.47 0.69◦ Convex 1.47 1.93 2.67 4.22
(d) Curved steel surface Concave −29.0 21.21 6.64 7.65 0.90◦ Concave -1.64 -1.59 1.21 1.79
(e) Curved steel surface Convex +23.0 22.63 5.51 7.37 1.05◦ Convex 4.46 6.35 0.91 3.59
(f) Metal desktop front Flat +∞ 06.72 2.82 3.64 0.49◦ Flat 0.13 0.62 0.82 1.02
(g) Plastic keyboard Flat +∞ 10.00 4.44 7.31 0.81◦ Flat 0.16 0.36 2.69 4.16
(h) Cardboard box Flat +∞ 18.00 4.31 5.13 0.72◦ Flat 0.15 0.28 2.41 3.00
(i) Wood board Flat +∞ 22.00 3.83 8.73 0.44◦ Flat 0.43 0.68 3.09 4.17
(j) Plastic battery case Flat +∞ 23.00 2.06 3.17 0.47◦ Flat 0.28 0.48 1.70 3.51
(k) Plastic monitor Flat +∞ 26.00 4.07 6.29 0.45◦ Flat 0.10 0.11 0.64 1.06
(l) Metal desktop side Flat +∞ 28.28 2.69 2.95 0.58◦ Flat 0.12 0.12 1.78 3.16

Table 1: RSA imaging performance in terms of error in object center position and orientation, detected curvature type, deviation of

overall shape, and error in object width (surface boundary). All the numbers are in the unit of centimeter except for the orientation

error and curvature type.

Object (Material)
Estimated

Reflection Loss
Top 3 Matches (out of 39)

Desktop (Metal) 0.3dB Metal, Quartzite, Glass
Box (Cardboard) 6.1dB Cardboard, Pertinax, Acrylic glass
Monitor (Plastic) 7.9dB Chipboard, Fiberboard, Plastic

Board (Wood) 12.7dB Wood, Brick, Breeze block
Cylinder (Metal) 0.3dB Metal, Quartzite, Glass

Table 2: Results of RSA material detection.

use a stronger radio, or move TX and RX much closer to the ob-
ject, e.g. <0.5m which becomes a near-field scenario and requires
a new imaging design. Third, the accuracy of width estimation de-
pends heavily on the RX movement distance. The amount of RX
movement distance required to maintain high precision increases
linearly with the sensing range and object size. We found that for
our HXI testbed and all the test objects, 1 meter RX movement
is sufficient. Our RX movement planning also predicts the same
trajectory length (see §5).

6.4 Robustness to Noise
While Table 1 lists the imaging result when the TX/RX position-

ing error is bounded by 6cm, we expand our noise model to explore
RSA’s noise tolerance. We found that RSA’s performance is insen-
sitive to trajectory errors when the deviation is bounded by 10cm.
Thus we focus on the TX/RX position errors. Specifically, we pick
X as the maximum location error (deviation from the ground truth),
draw a circle of radius X around the ground truth and randomly
pick a point on the circle as TX’s relative location to RX. We re-
peat this 20 times per X and report the maximum imaging errors.
Using object (g) as an example, Figure 9 plots the maximum er-
ror in center location and width estimation for X between 0 and
20cm. We see that both errors grow gracefully with X , indicating
that RSA is robust against TX/RX positioning errors. We observe
this same trend for all objects.

6.5 RSA vs. SAR and unfocused SAR
We also compare RSA with SAR and unfocused SAR (as de-

scribed by existing work [52]). Since both SAR algorithms do not
offer curvature and material information, we only evaluate object
center location error and width error. Specifically, for each scenario
defined by TX/RX positioning error, RX trajectory, and the object,
we compute the amount of error reduction achieved by RSA, e.g.
width error (SAR)
width error (RSA) or center location error (SAR)

center location error (RSA) . We report the min, median,
and max values across the eleven objects, 10 trajectories and 20 in-

stances of position errors for a given range X . Because unfocused
SAR is highly sensitive to the choice of RX movement distance, we
use 0.5 meter for unfocused SAR (which provides the best overall
performance across all the objects), and 1 meter for RSA and SAR.

Figure 10 lists the error reduction factor of RSA. For center
point estimation, SAR and unfocused SAR have very similar per-
formance [52], so we only report one. We see that RSA can effec-
tively reduce the imaging error. This is particularly true for width
estimation – the median reduction factor is 2-6.7 (over unfocused
SAR) and 2.9-8.2 (over SAR); while the maximum value can reach
18 and 38 respectively. Also, width error reduction peaks at zero
TX/RX position error, confirming RSA is highly robust against tra-
jectory errors. Finally, RSA reduces errors in center point estima-
tion by a factor of 1.2-2.32 (median). This is mostly due to the
iterative search process (§4.6).

6.6 Microbenchmarks

RX Movement Distance. Figure 11 compares the object width
error at different RX movement distances. We see that RSA follows
the same trend as noise-free SAR: imaging error reduces with mov-
ing distance and gradually converges to a stable value. This aligns
with the theoretical limit in Eq. (1) where increasing aperture (via
RX movement) leads to higher imaging precision. Unfocused SAR,
however, is highly sensitive to this parameter.

RSS Measurement Frequency. This factor translates into the
choice of N , the number of measurements for a given movement
distance. In practice, we want to minimize measurement frequency
to save energy. Yet insufficient number of measurements reduces
the accuracy of our model fitting. Our results in the above perform
one measurement per 1cm. At a slow movement speed of 0.5m/s
(1.1mph), the measurement frequency is once per 20ms. We found
that the results remain the same even at a lower frequency of once
per 80ms (i.e. once per 4cm).

Beam Steering Granularity. Using an electronically controlled
mechanical rotator, our testbed can steer antenna beam in incre-
ments of 0.15◦ . While our experiments above use data from 1◦

steering, we also perform imaging under 0.15◦ , 3◦ and 5◦ steer-
ing to examine the impact of antenna hardware (steerable phased
arrays). To separate its impact on localization, we use the same
TX/RX localization result of 1◦ across all the experiments. Our re-
sults show that 1◦ − 3◦ steering is an efficient choice – increasing
granularity to 0.15◦ reduces width error by < 0.5cm while relax-
ing to 5◦ doubles the width error.
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Figure 9: RSA’s imaging errors scale grace-
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TX/RX

Positioning

Error (cm)

center location error (SAR)
center location error (RSA)

width error (unfocused SAR)
width error (RSA)

width error (SAR)
width error (RSA)

Median Min Max Median Min Max Median Min Max
0 1.20 1.00 2.07 6.71 3.88 17.95 6.92 3.16 19.09
4 1.72 1.24 2.77 4.44 2.59 11.44 8.20 4.59 38.33
8 1.72 1.44 2.63 3.23 1.27 6.67 5.06 3.34 10.39
16 1.85 1.62 3.83 2.32 1.11 5.29 2.90 1.84 6.89
20 2.32 1.47 2.78 2.18 1.01 3.82 3.05 1.44 6.09

Figure 10: Comparing RSA to SAR and unfocused SAR in terms of the ratio of error

under SAR (or unfocused SAR) and error under RAS. The RX trajectory errors are

present in all the experiments. Since the performance of unfocused SAR is sensitive

to RX moving distance, we configure it as 0.5 meter while SAR and RAS use 1 meter.
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(b) Imaging result (top view)

Figure 12: “Realistic” case study of RSA imaging: a drone seeks to locate the small

metal object while avoiding a nearby obstacle.

6.7 Case Study: Multiple Objects Detection
Consider a scenario in Figure 12(a), where a drone uses RSA

imaging to locate an object, i.e. a square metal box of size 8cm×8cm.
The target rests on a wood floor with a nearby larger (metal) object
(size 18cm×18cm) as the obstacle. To locate (and pick up) the
object, a drone needs to recognize both objects, with the help of
another drone as TX.

With two testbed radios emulating drones, they first perform
60GHz localization to locate each other. They then coordinate to
sense the objects. Since the two objects are in proximity they can
be covered by a single TX beam. After TX focuses its beam on the
two objects (and sends beacon signals), RX moves in two directions
sequentially to determine location, curvature, width and height, and
material. The visual imaging result and the ground truth are shown
in Figure 12(b) where RSA recognizes two flat metal objects, their
overall shape/size, and the wood floor in between.

7. RELATED WORK
Camera-based Imaging. Camera is widely used for object
recognition [16, 32, 33]. Detecting object position and shape, how-
ever, requires bulky, high-end cameras (e.g. Google’s Project Tango
requires an infrared depth camera and a fish-eye lens). These mech-
anisms require good visibility and cannot reliably identify object
material. RSA takes a low-cost RF-based approach leveraging mo-
bile networking chipsets, and its 60GHz reflected signals reveal key
properties of the object surface without any light.

Sonar and Radar Systems. These systems have been applied
to many fields [43], from mapping terrain contour, tracking moving
targets, to detecting concealed weapons at security checkpoints [17,
6, 10, 34, 42, 46]. They use special hardware like X-Ray or bulky
lenses to achieve high precision, which are too large/expensive for
mobile devices. RSA differs by using commodity 60GHz network-
ing chipsets that are being integrated into today’s mobile devices.

RF-based Systems. Researchers have explored WiFi-band so-
lutions to detect human motion, activity and gestures, and to de-

tect (metal) objects [8, 7, 15, 36, 29, 40, 12]. A recent work
built WiFi imaging using OFDM and large phased arrays (avail-
able on APs) and discussed the resolution limitation due to its large
wavelength [25]. Our work considers 60GHz (mmwave) commu-
nications because it offers several desirable qualities for mobile
imaging when compared with WiFi: tiny wavelength, high direc-
tionality, stable and predictable signal propagation. In addition to
providing high-resolution (∼1-5cm), our imaging algorithm is also
different by using just RSS measurements (rather than phase [25])
without requiring specialized hardware (e.g. [8, 7]). Our work was
inspired by recent 60GHz radar designs [52, 44] that apply SAR
to detect object surface location and boundary in absence of noise.
Our work develops a new imaging solution that is robust against
noise and also detects surface curvature and materials.

8. LIMITATIONS AND FUTURE WORK
Our proposed 60GHz mobile radar detects the location, orienta-

tion, curvature and surface boundaries of nearby objects using only
signal strength measurements, and achieves cm-level precision.

Several limitations remain before we can realize a high preci-
sion, environmental mapping system using RF reflections. First,
our imaging works when both TX and RX have line-of-sight to
the target object because 60GHz signals cannot penetrate walls or
most objects. To perform environmental mapping in 3D, TX and
RX ( e.g., mobile devices) must have a way to intelligently navigate
across space while coordinating their positions. Second, so far we
only consider the general shape of static and regular object surfaces
where reflected RSS is stable over time and predictable via a model.
For moving or irregular objects, e.g., humans, and detailed shape,
e.g., keys on keyboard, we need new models to define the corre-
lation between object shape and reflected signal patterns. Finally,
we need to develop an algorithm for TX and RX to reliably and
iteratively scan individual surfaces while moving in unknown envi-
ronments. Such schemes must be robust and work reliably in large
environments with complex objects (e.g. caves, collapsed tunnels).
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