Trimming the Smartphone Network Stack

Yanzi Zhu, Yibo Zhu*, Ana Nika, Ben Y. Zhao, and Heather Zheng

SAND Lab, UCSB *Microsoft Research yanzi@cs.ucsb.edu

Networking Consumes Energy

Live Broadcasting

Media Streaming

 Existing energy measurements⁺ show that networking costs ~50% energy of a daily app

Reducing Networking Energy

- Networking subsystem as a black box
 - ON/OFF power management
 - Downclocking (MobiCom'11, NSDI'13, MobiCom'14)

• What happens inside the box?

• Challenge: lack of componentized energy analysis

Componentized Energy Model

- Power meter measures energy of the entire phone, not individual components
- Recent work⁺ built per-component energy model for networking

+ Nika, A., and et al. "Energy and performance of smartphone radio bundling in outdoor environments." In *Proc. of WWW* (2015).

Validating Energy Model

Two Phones (S3 & Note)

Test 1: Run CPU only

Validating Energy Model

Two Phones (S3 & Note)

Test 1: Run CPU only

Model-Based Energy Analysis

- Isolating *networking*
 - Screen turned off, no other apps, etc.
 - Minimal logging overheads (<5% CPU usage)
- Extensive experiments

Key Finding 1: Large CPU Energy Cost

Key Finding 1: Large CPU Energy Cost

- CPU draws considerable amount of power
 - Scale with streaming rate
- CPU takes up to 60% energy (WiFi) and 20% (LTE)
 - Up to 800mW (WiFi) and 600mW (LTE)
 - WiFi NIC consumes 200–900mW⁺

+ Nika, A., and et al. "Energy and performance of smartphone radio bundling in outdoor environments." In *Proc. of WWW* (2015).

A Deeper Look at CPU for Networking

• Energy breakdown of processes

Key Takeaways

1. CPU consumes significant energy in networking

2. Network stack processing consumes a lot of CPU

- Rest of This Talk

- Cut CPU usage by trimming the network stack
 - Reduce memory copies: one-copy
 - Reduce TCP protocol processing: TCP offloading

Method 1: Reduce Memory Copies

- Memory copies:
 kernel → user space → kernel
- Unnecessary because streaming apps do not modify data
- Zero-copy requires NIC's support (memory gather operation)

Method 1: Reduce Memory Copies

• Unnecessary because streaming apps do not modify data

- Zero-copy requires NIC's support (memory gather operation)
- Not available in today's smartphones
- We use one-copy

Energy Savings of One-Copy

• Metric: average CPU energy saving %

- Savings = $1 - \frac{\text{Energy}(CPU_{1-copy})}{\text{Energy}(CPU_{2-copy})}$

- Overall <10% savings (WiFi & LTE)
 - Throughput is the bottleneck, not memory copies
- Emulate high throughput via *loopback* interface
 - 30–40% savings at 150Mbps (Note) or 50Mbps (S3)

Outline

- Componentized energy analysis
 - Finding 1: CPU costs a lot in networking
 - Finding 2: network stack costs the most in CPU
- Reduce memory copies: one-copy
- Reduce TCP protocol processing: TCP offloading
- Conclusion

Method 2: Offload TCP to AP

- TCP isn't energy efficient
- But we still want it
- Idea: move TCP processing to AP, i.e. TCP offloading
 - Applicable to *private* and *trusted* environments (*e.g.*, home, office)
 - If not, do not offload

- AP as a proxy
 - Handle TCP/IP stack processing
- Device w/ thin link layer
- Raw link-layer frames in last hop
 - Append a flow identifier in link-layer header

Energy Savings of TCP Offloading

(Loopback) Streaming Rate

- TCP consumes substantial CPU power
 - WiFi NIC costs between 200mW and 900mW⁺
- Offloading energy savings scale with throughput
- Up to 60% CPU energy (loopback), up to 40% (WiFi)

+ Nika, A., and et al. "Energy and performance of smartphone radio bundling in outdoor environments." In *Proc. of WWW* (2015).

TCP Offloading vs UDP

(Loopback) Streaming Rate

- UDP worse than TCP
- Datagram keeps message boundary
 - \rightarrow Per-packet system call
 - Especially at high throughput

Conclusion

- Reducing CPU usage is important for energy-efficient networking
- One-copy is good at high throughput
 - What about zero-copy?
- Offloading outperforms TCP and UDP in energy cost
 - Practical deployment
 - Need private and trusted environment
 - Need reliable last-hop link

Thank you!

Questions?